Worksheet -1 Subject: - Mathematics Class: - VIII Teacher: - Ms. Neeru

Name: _____ Class & Sec: _____ Roll No. ____ Date: 21.07.2020

Squares and Square Roots (A)

Instructions: Find the square root or square of each integer.

$$\sqrt{256} =$$

$$\sqrt{4} =$$

$$\sqrt{256} = \sqrt{4} = \sqrt{169} = \sqrt{100} =$$

$$\sqrt{100} =$$

$$\sqrt{121} =$$

$$\sqrt{196} =$$

$$\sqrt{121} = \sqrt{196} = \sqrt{16} = \sqrt{64} =$$

$$\sqrt{64} =$$

$$\sqrt{1} =$$

$$\sqrt{9} =$$

$$\sqrt{49} =$$

$$\sqrt{144} =$$

$$\sqrt{225} =$$

$$\sqrt{81} =$$

$$\sqrt{225} = \sqrt{81} = \sqrt{25} = \sqrt{36} =$$

$$\sqrt{36}$$
 =

$$11^2 =$$

$$11^2 = 13^2 =$$

$$14^2 =$$

$$10^2 =$$

$$12^2 =$$

$$1^2 =$$

$$15^2 =$$

$$6^2 =$$

$$9^2 =$$

$$3^2 =$$

$$16^2 =$$

$$8^2 = 7^2 = 5^2 =$$

$$2^2 =$$

Squares and Square Roots (A) Answers

Instructions: Find the square root or square of each integer.

$$\sqrt{256} = 16$$

$$\sqrt{4} = 2$$

$$\sqrt{169} = 13$$

$$\sqrt{256} = 16$$
 $\sqrt{4} = 2$ $\sqrt{169} = 13$ $\sqrt{100} = 10$

$$\sqrt{121} = 11$$

$$\sqrt{121} = 11$$
 $\sqrt{196} = 14$ $\sqrt{16} = 4$ $\sqrt{64} = 8$

$$\sqrt{16} = 4$$

$$\sqrt{64} = 8$$

$$\sqrt{1} = 1$$

$$\sqrt{9} = 3$$

$$\sqrt{49} = 7$$

$$\sqrt{1} = 1$$
 $\sqrt{9} = 3$ $\sqrt{49} = 7$ $\sqrt{144} = 12$

$$\sqrt{225} = 15$$
 $\sqrt{81} = 9$ $\sqrt{25} = 5$ $\sqrt{36} = 6$

$$\sqrt{81} = 9$$

$$\sqrt{25} = 5$$

$$\sqrt{36} = 6$$

$$11^2 = 121$$

$$13^2 = 169$$

$$14^2 = 196$$

$$11^2 = 121$$
 $13^2 = 169$ $14^2 = 196$ $10^2 = 100$

$$12^2 = 144$$

$$1^2 = 1$$

$$12^2 = 144$$
 $1^2 = 1$ $15^2 = 225$ $6^2 = 36$

$$6^2 = 36$$

$$9^2 = 81$$

$$3^2 = 9$$

$$4^2 = 16$$

$$3^2 = 9$$
 $4^2 = 16$ $16^2 = 256$

$$8^2 = 64$$

$$8^2 = 64$$
 $7^2 = 49$ $5^2 = 25$ $2^2 = 4$

$$5^2 = 25$$

$$2^2 = 4$$

Properties of Square number:

(i) A number ending in 2, 3, 7 or 8 is never a perfect square.

Example: 152, 1028, 6593 etc.

- (ii) A number ending in 0, 1, 4, 5, 6 or 9 may not necessarily be a square number. Example: 20, 31, 24, etc.
- (iii) Square of even numbers are even. Example: $2^2 = 4$, $4^2 = 16$ etc.
- (iv) Square of odd numbers are odd. Example: $5^2 = 25$, $9^2 = 81$, etc.
- (v) A number ending in an odd number of zeroes cannot be a perferct square. Example: 10, 1000, 900000, etc.

$$\sqrt{1} = 1$$
 since $1^2 = 1$
 $\sqrt{4} = 2$ since $2^2 = 4$
 $\sqrt{9} = 3$ since $3^2 = 9$
 $\sqrt{16} = 4$ since $4^2 = 16$
 $\sqrt{25} = 5$ since $5^2 = 25$
 $\sqrt{36} = 6$ since $6^2 = 36$
 $\sqrt{49} = 7$ since $7^2 = 49$
 $\sqrt{64} = 8$ since $8^2 = 64$
 $\sqrt{81} = 9$ since $9^2 = 81$
 $\sqrt{100} = 10$ since $10^2 = 100$

Ex 6.2 Q2

- 2. Write a Pythagorean triplet whose one member is.
 - i. 6
 - ii. 14
 - iii. 16
 - iv. 18

Solution:

For any natural number m, we know that 2m, m^2-1 , m^2+1 is a Pythagorean triplet.

- i. 2m = 6 $\Rightarrow m = \frac{6}{2} = 3$ $m^2 - 1 = 3^2 - 1 = 9 - 1 = 8$ $m^2 + 1 = 3^2 + 1 = 9 + 1 = 10$ $\therefore (6, 8, 10)$ is a Pythagorean triplet.
- ii. 2m = 14 $\Rightarrow m = \frac{14}{2} = 7$ $m^2-1=7^2-1=49-1=48$ $m^2+1=7^2+1=49+1=50$ $\therefore (14,48,50)$ is not a Pythagorean triplet.
- iii. 2m = 16 $\Rightarrow m = \frac{16}{2} = 8$ $m^2 - 1 = 8^2 - 1 = 64 - 1 = 63$ $m^2 + 1 = 8^2 + 1 = 64 + 1 = 65$ $\therefore (16, 63, 65)$ is a Pythagorean triplet.
- iv. 2m = 18 $\Rightarrow m = \frac{18}{2} = 9$ $m^2 - 1 = 9^2 - 1 = 81 - 1 = 80$ $m^2 + 1 = 9^2 + 1 = 81 + 1 = 82$ $\therefore (18, 80, 82)$ is a Pythagorean triplet.

Ex 6.3 Class 8 Maths Question 3.

Find the square roots of 100 and 169 hy the method of repeated subtraction.

Solution:

From 100, we subtract successive odd numbers starting from 1 as under:

100 −1 = 99 99 −3 = 96 96 −5 = 91
91 −7 = 84 84 −9 = 75 75 −11 = 64
64 −13 = 51 51 −15 = 36 36 −17 = 19
19 −19 = 0
And obtain 0 at 10th step.
∴
$$\sqrt{100}$$
 = 10

From 169, we subtract successive odd numbers starting from 1 as under:

QUESTIONS

- 2. If a no. ends with digits -, -, -, then it is not a Perfect Square.
- 3. How many Perfect Square are there in between 10 & 20.
- 4. Square of 84 ends with ----- digit.
- 5. How many Zeros are there in

Square of 70-----

Square of 700-----

6. Complete Pythagorean Triplets

(3, 4, _)

(_ ,8, 10)

(5,__, 13)

Answer:

- 1. 0,1,4,5,6,9
- 2. 2,3,7,8
- 3. Only 16
- 4. 6
- 5. 70---2 zeros

700--4 zeros

6. (3,4,5)

(6,8,10)

(5,12,13)